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stopband of the sinusoidally varying slot pattern. This may be due

to broader apex of the sinusoidal slot in comparison to sharper apex

of the triangular slot.

IV. CONCLUSION

The SSDA has been extended for computing the dispersion chw-

acteristics of some periodic structures in the k. – ~ plane. With the

incorporation of the periodic boundary conditions, the present method

is very well suited to analyze various possible periodic structures in

rnicrostrip, fin lines, and co-planar waveguides, which were difficult

to analyze before. The interesting feature of the method is that the

same set of the sinusoidal basis functions can be utilized for most of

slot geometry. This method can also be utilized to study other types

of periodic structures, like meander lines and so on.
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support short-range electromagnetic spatial sotitons with a complex
propagation constant. A theoretical model hased on the Ginzhurg-Landau
theory is used. Analytical results for the complex solitons predict unique

features that cannot be found in conventional solitons in normal (superc-
onductive) med]a.

I. INTRODUCTION

Soliton and solitary-wave propagation in material media such as

dielectrics, semiconductors, plasmas, and magnetized materials have

long been of extensive interest in a rich variety of branches that

include both pure and applied sciences [1]. For solitary light beams

(spatial solitons) that are describable with a family of nonlinear

Schrodinger equations, a picture that explains solitons in terms of the

fundamental modes of the linear waveguide they induce was found

to be consistent with our physical intuition [2], [3]. As is well known

in classical waveguide theory, guided modes in a linear waveguide

can be classified into three types: bound (oscillatory), evanescent

(diffusive), and complex modes, which can be characterized by a real,

a purely imaginary, and a complex propagation constant, respectively.
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The bound modes are normal guided modes, which propagate in

a waveguide without attenuation as long as material absorption

is negligible. In striking contrast to these, the evanescent modes

decay exponentially along the propagation axis without sinusoidal

oscillations, even if the absorption would vanish. For instance, one

can observe an evanescent mode in the lower vicinity of the cutoff

frequency of a commercially available waveguide used for microwave

transmission. The complex modes, for which neither the phase nor the

attenuation constant vanishes, are known to exist in several lossless

waveguides, such as dielectric-loaded waveguides [4]–[6], finlines

[7], and microstrip lines [8]. As mentioned above, it is obvious that

solitons, termed in the usual context, are closely related with the

bound modes [3]. In the similar context, we would like to pose an

interesting question: Is there a solitonic entity that has analogy to the

complex and the evanescent modes of a linear waveguide? If so, how

is that expressed algebraically? One will notice immediately that the

answer is quite nontrivial. Indeed, to our knowledge there has been

no report in which an example of such an analog is presented. Our

conclusion is that, at least for such normal media as cited above, one

could not find a candidate of the complex soliton (i.e., the soliton with

complex propagation constant). In this paper, we find analytically

that a type-II superconductor may support a solitonic analog of the

complex modes, which approaches the evanescent soliton in the limit

of low frequency. In the framework of the Ginzburg-Landau (GL)

theory [9], analytical results for high-frequency electromagnetic wave

propagation in the form of a spatial complex soliton are presented.

IL FORMALISM BASED ON GINZBURG-LANDAU THEORY

We consider the time-harmonic electromagnetic wave propagation

in bulk superconductors. We assume that the energy of an electro-

magnetic quantum (i.e., a photon) is much lower than the gap energy

(hw < A), and the temperature is considerably lower than the

critical value (T << T.). In such situations the contribution from the

frequency-dependent normal (superconducting) current l~n (w) I will

be sufficiently smaller than that from the superconducting current Ii, 1.

This relation, l~n (w)\ << 1~~1, allows one to employ a perturbational

treatment based on quasi-static approximation [9], [10], and thus leads

to the GL equations

&’[iv+ (27r/@o)4’m - v + Iwl’v = o (la)

v x v x A = (47r/c)[J~ + ?jn(ti)] (lb)

j$(z) = –i[en.(T)/(4m)](V* . VT – VT* V)

- [e2/(rnc)]n.(T) lT12~ (lC)

where T (?’) is the order parameter [C is a vector that indicates spatial

dependence of field, i.e., for Cartesian coordinate, z = (z, y, z)],

&) is the vector potential, & is the coherence length, ~o is the flux

quantum, and n, (2’) stands for the density of the superconductive

component. Other symbols (c, e, m) obey the usual definition in

the GL theory [9]. This theory is established as a representative

phenomenological approach to studying superconducting states that

undergo spatial variations due to an external field. In (lb) j: (d

[In (c)] indicates the current density vector due to superconductwity

(normat conductivity); the argument “w” of the normal current has

been attached to indicate explicitly that it depends significantly on the

frequency of the time-harmonic electromagnetic field. The explicit

form of .jn depends not only on the frequency but on the temperature

under consideration and the purity of a superconductor [see (3)–(5)1.

Note that for the field variables in (1), the time-harmonic dependence

of exp (–id) is implied.

The specific form of ~n can be written as [9]

in = Q(LJ)4 (2a)

with

Q(w) = (3/4) [(nee2)/(rnc)][A/ (hvg)]Ql (w) (2b)

where ne is the number density of electrons and q is the center-of-

mass momentum of a Cooper pair. The expression of Q 1 depends

on the temperature. At T = O, superconductors do not contain quasi-

particles that could absorb quanta of any energy. The absorption of

electromagnetic waves occurs when hw ~ 2A. In the vicinity of the

threshold we obtain [9]

QI N T2{(fiw)/[2A(0)] - 1}. (3)

Note that for FLU >> 2A the difference between a superconduc-

tor and a normal metal disappears. The characteristic wavelengths

corresponding to the threshold (fiw = 2A) lie within a range of

the order of l–O. 1 mm and the corresponding frequencies of the

order of 1011–1012 Hz. At T > 0 there exist quasi-pmticles in

the superconductor that can absorb photons of any frequency. The

expression that is valid for w << A, T << A is given by [9]

Q, N 47r sinh [w/(2T)]~o[w/(Zl’)] exp [-A(0) /T] (4)

where KO is the modified Bessel function of the second kind. For a

dirty superconductor in the London limit near T,, when u << A <<

Tc (obviously, for so-called high-Tc superconductors this condition

would become much relaxed), we have the following relation

Q(ti) = WfT/C (5)

where o is the conductance due to the superconductor alloy.

III. COMPLEX SOLITON SOLUTIONS

Concentrating on the transverse-electric (TE) polarized field (where

61/t?y E O) and on a gauge ~ = (0. A. O), (1) with (2a) can be

reduced in the form

K-2(82/~X2 +~2/tk2 - A2)T+IU -~’= O (6a)

(612/1%2 + 82/~s2)A + i~A - T2A = O (6b)

where ‘V has been assumed to be real. With this assumption, the first

term on the right-hand side of ( lc) is dropped, which results in the

substantial reduction of subsequent algebraic effort. In the derivation

of (6), the physical variables have been scaled according to

z -.i X/A, : + :/A. /? + $A, A ~ A/[q$o/(2nJ)]. (7)

With this normalization, K and ~ are defined as

K = J/& y = 2q50Q/(c~) (8)

both of which must be positive.

For an explicit form of the total vector field (IF, A), we consider

V(.z, 2) = #(z) (9a)

A(z, z) = (1/2) A(.z) exp (ibz) + C.C. (9b)

where I? is the propagation constant (we define S’ s Re /3 > 0,

8“ ~ Im D > O) and C.C. denotes complex conjugate. On substitution

of (9) into (6), one obtains a set of simultaneous nonlinear ordinary

differential equations with three unknowns [A(r), @(z), /3]

d2~/dx2 + tt2tJ – W21/.J3E O (lOa)

d2.4/dx2 + (iy – j32)A – $2A = O (lOb)
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(a) (b)

Fig. 1. Schematic transverse intensity profile of component fields of com-
plex soliton in a superconductive medium. (a) Dark component. (b) Bright
component.

where tt is the GL parameter that is defined in (8) and T is a

frequency-dependent real parameter that comes from the normal

current in (lc); the specific form of v is determined from (2)–(5).

In the derivation of (lOa), we have dropped a term proportional to

lA12@, implying that IAO I < KlrjJO1. (The definition of AO and @Ois

presented below.) Because (10) are coupled nonlinear Schrodinger-

type equations with self-defocusing nonlinearity, it will be reasonable

to set a particular ansatz of a dark soliton [1]

~(z) = @Otanh (ow), A(z) = AO tanh(wr) (11)

where (~, @o, AO ) are real parameters that feature the soliton prOfile

shown in Fig. 1(a). Note that it is the addition of the term I/JZA in

(lOb) that is responsible for inducing the nontrivial transverse pattern

of the vector potential in an unbounded medium. In the framework

of our perturbational approach based upon a quasi-static treatment, it

must be maintained that ~ << @# [10]. On substitution of (11) into

(10), to be self-consistent, it must be required that

~=2-’/’,1401=l, K=l (12)

p = /3’ +ip” = (i-y– 1)’/’. (13)

Note that the value of K exceeds KC s 2–lIZ .=. 0.7071, which is

the critical value between the type-I (O < K < Kc) and the type-II

(K > Kc) superconductors [9]. From (13) one can obtain the explicit

form of the propagation constant

b’ = ‘){2[1 + (1 + #)’/’]}-’/’ (14a)

p“ = {[1+(1 +7’) ’/’]/2}’/’ (14b)

where y << 1. It should be noted in (14) that as the complex modes

that were predicted for microwave transmission lines [4]–[8], the

magnitude of the attenuation constant /3” is comparable to that of

the phase constant ,8’, In the limit of y -+ O, (14) predict @ ~ O,

/3” ~ 1, which shows a typical feature of the evanescent soliton in

the sense that the phase constant vanishes. The evanescent soliton

has analogy to the waveguide mode below a cutoff frequency. The

penetration depth of the complex soliton (the soliton with complex

propagation constant) is estimated by L s l/@’. For instance, for

‘y = 10-2, L = 1.0.

As au alternative for (9a) in what follows, we consider

V(T, z) = (1/2)@(Y) exp (ipz) + cc. (15)

where p is a nonvanishing real parameter that indicates the pitch

of a sinusoidal modulation along the longitudinal (the x) axis.

With vanishing p, the longitudinal variation of the order parameter

disappears, and apparently (15) is reduced to (9a). On substitution of

(9b) and (15) into (6), as in the case of p = O, one obtains a set of

simultaneous nonlinear ordinary differential equations with the three

unknowns [.4(z), @(z), p]

d2*/dx2 + ttz$ – (3/4) fi2$3 s O (16a)

d2A/dx2 + (iy – /32)A – (1/2)~2.4 = O. (16b)

Here, rotating wave approximation that will be valid for /3’ < Ipl

has been applied, and as in the derivation of (10), implying that

1.40I < Kl@o 1, we have dropped the term proportional to IAI’4.

Substituting (11) into (16), we derive

~ = 3-’/2. lr/n = (4/3)’/’, ~ = (2/3)1/’ (17)

P =8’+ i~” = (i~ - 2/3)1/2 (18)

with

0’ = (v/2) {6/[2 + (4 + %2)1’21}”2 (19a)

l?” = {[2+ (4+9T2)’/2]/6}1”2. (19b)

From (17), in the present case as well, the GL parameter is larger

than the critical value [m = (2/3) llz “=. 0.8165 > Kc]. In the limit

of y ~ O, it follows that /3’ ~ O, p“ -+ (2/3)1/2. Again one can

find the evanescent soliton. For instance, for y = 10–2, L = 1.22.

IV. ELECTROMAGNETIC-FIELD COMPONENTS

From (9b) and (11), the expression of the total vector potential can

be written in the form

A(a, z, t) = 1.40[ tanh(wr) exp (–~’’s’) cos (/3’z – tit). (20)

Thus, the resultant nonvanishing electromagnetic-field components

are straightforwardly derivable

Ev = –d.4/dt = –u4AoI tanh (ax) exp (–13”Z) sin (I?’z – tit)

(21a)

l?= = –13A/13z = 1.4o1tanh (ax) exp (–~”z)

X [6’ sin (8’.z – wt) – P“ cos (@’~ – wt)] (21b)

13, = 19A/~z = alAo I sechz (az) exp (–13”Z) cos (13’z – UJt).

(21C)
Focusing our attention solely on a radiation field, in the derivation of

(21a) we have ignored any contribution from the scalar potential. It

will be worth emphasizing that these expressions of the field profiles

contain an interesting feature. In (21a) and (2 lb), first we note that

the intensity of Ey and B, has a dip around the center [Fig. l(a)],

whereas that of B, has a peak there [Fig. l(b)]. Thus, in the vicinity

of the center (z N O), the longitudinal field component can relatively

be dominant, and the soliton becomes more “bright.” The dominance

is reversed as the transverse site is distant from the center.

V. CONCLUSION

We have shown that a type-II superconductor may support complex

solitons of weak electromagnetic radiation. They could be regarded

as a solitonic version of the complex modes that were predicted for

certain kinds of electromagnetic waveguides. The results presented

herein will be useful for exploiting the fundamental kinetics of

short-range solitons in a future microwave device that includes

superconductors and/or superconductive thin films.
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On the Computation of Complex Modes in Lossless

Shielded Asymmetric Coplanar Waveguides

Khwaja M. Rahman and Cam Nguyen

Abstract-We compute complex modes in Iossless shielded asymmetric

coplanar wavegnides (CPW’S) using the spectral domain technique. The
slot asymmetry is found to significantly affect the existence of the complex
modes. These modes are found to exist at low microwave frequencies even

when using materials with a low permittivity. We found that waveguide

modes degenerate into complex modes more frequently than CPW (T)

and slotline (c) modes. When the structures are highly asymmetrical

and when the dielectric substrates are thick or have a high permittivity,

the degeneration of lower-order c-modes into complex modes is detected.

Other forms of mode conversion, where a wavegnide mode is converted

to a c-mode, are also observed, especirdly in highly asymmetric structures

and when using dielectric materials of a high permittivity or of a large
thickness. Nmnericaf convergence of tbe complex modes’ propagation
coostauts is also examined.

I. INTRODUCTION

Since its discovery in 1969 by C. P. Wen [1], coplanar waveguide

(CPW) has been used widely for microwave integrated circuits
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(MIC’S) and monolithic microwave integrated circuits (MMIC’S) [2],

Among CPW’s, the asymmetrical version is very attractive since

it can provide additional circuit design flexibility and improved

characteristic impedance range, Various dynamic [3] and quasi-static

[4] analyses have been performed for asymmetric CPW’S. However,

the analysis of complex modes in asymmetrical CPW’s has not yet

been addressed. As will be seen, the existence of complex modes is

highly pronounced in asymmetrical CPW’s. They have been found

even at low microwave frequencies and in low permittivity substrates.

A thorough knowledge of these complex modes is thus very important

for the accurate design of MIC’s and MMIC’s using asymmetric

CPW’S in both low and high microwave regions.

In the past several years, complex modes in lossless waveguid-

ing structures have been studied by a number of researchers. The

presence of complex modes in lossless waveguiding structures was

first predicted for a circular dielectric-loaded waveguide [5], Later,

theoretical as well as experimental investigations were made on the

circular dielectric-loaded waveguide to confirm the existence of these

modes [6], [7]. Complex modes were also reported for lossless finlines

[8] and shielded rnicrostrip lines [9], [10].

We present in this paper au extensive investigation of complex

modes in lossless shielded three-layer asymmetric CPW’s using the

spectral domain approach (SDA) [11]. The effects of slot asymmetry,

and dielectric constant and thickness of dielectric materials on the

possible existence of complex modes, are described. Special attention

is given to the numerical convergence of the calculated complex

modes’ propagation constants. The developed analysis has been

applied to a symmetric CPW, and generated numerical results of

the propagation constants of several real modes agree well with

previously published data [12]. It should be noted here that our

considered three-layer asymmetric CPWs are generrd in that they

are applicable to both open and shielded CPW’s, both symmetry

and asymmetry in slots and ground planes, with and without a

back-side conductor, with and without dielectric overlay, and with

finite- and infinite-extent substrates. They can elude the energy

leakage or increase the single-mode operating range with properly

chosen dielectric substrates [131. It is therefore expected that these

asymmetrical CPW structures can be exploited to achieve MIC’s and

MMIC’s with enhanced performance and smaller size.

II. NUMERICAL RESULTS AND DISCUSSIONS

Complex modes in a lossless shielded three-layer asymmetric

CPWs with assumed infinitesimally thin metallization (Fig. 1) are

investigated using the SDA. Applying the SDA produces a system

of homogeneous linear equations. By setting the determinant of the

coefficient matrix of the resultant equations to zero, we can solve for

the propagation constants, T, of all of the eigenmodes. The vahtes of

~ will be searched in the complex plane, owing to the fact that it is

complex for complex modes. Due to the asymmetry in the structure,

both the CPW (m) and slotline (c) modes will be excited along with

the waveguide modes, leading to the possible existence of complex

n-, c-, and waveguide modes. These complex modes appear in pairs

and are formed when two evanescent modes degenerate into a pair of

modes having ~ = CY+ j~, and which propagate in the + directions

with a phase constant ~ and attenuation constant a. These respective

waves attenuate and grow exponentially with a as they propagate,

leading to no corresponding transmitted power. Their existence is

noticed when the root of the eigenvalue equation is complex, in spite

of the lossless transmission line assumption.
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