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Fig. 3. Dispersion characteristic for sinusoidal slot variation.
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Fig. 4. Dispersion characteristics for sinusoidal and triangular slot variation.

stopband of the sinusoidally varying slot pattern. This may be due
to broader apex of the sinusoidal slot in comparison to sharper apex
of the triangular slot.

IV. CONCLUSION

The SSDA has been extended for computing the dispersion char-
acteristics of some periodic structures in the kg — § plane. With the
incorporation of the periodic boundary conditions, the present method
is very well suited to analyze various possible periodic structures in
microstrip, fin lines, and co-planar waveguides, which were difficult
to analyze before. The interesting feature of the method is that the
same set of the sinusoidal basis functions can be utilized for most of
slot geometry. This method can also be utilized to study other types
of periodic structures, like meander lines and so on.
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Complex Solitons in a Superconductive Medium

K. Hayata and M. Koshiba

Abstract—We show analytically that a type-II superconductor may
support short-range electromagnetic spatial solitons with a complex
propagation constant. A theoretical model based on the Ginzburg-Landau
theory is used. Analytical results for the complex solitons predict unique
features that cannot be found in conventional solitons in normal (asuper-
conductive) media.

1. INTRODUCTION

Soliton and solitary-wave propagation in material media such as
dielectrics, semiconductors, plasmas, and magnetized materials have
long been of extensive interest in a rich variety of branches that
include both pure and applied sciences [1]. For solitary light beams
(spatial solitons) that are describable with a family of nonlinear
Schrodinger equations, a picture that explains solitons in terms of the
fundamental modes of the linear waveguide they induce was found
to be consistent with our physical intuition [2], [3]. As is well known
in classical waveguide theory, guided modes in a linear waveguide
can be classified into three types: bound (oscillatory), evanescent
(diffusive), and complex modes, which can be characterized by a real,
a purely imaginary, and a complex propagation constant, respectively.
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The bound modes are normal guided modes, which propagate in
a waveguide without attenuation as long as material absorption
is negligible. In striking contrast to these, the evanescent modes
decay exponentially along the propagation axis without sinusoidal
oscillations, even if the absorption would vanish. For instance, one
can observe an evanescent mode in the lower vicinity of the cutoff
frequency of a commercially available waveguide used for microwave
transmission. The complex modes, for which neither the phase nor the
attenuation constant vanishes, are known to exist in several lossless
waveguides, such as dielectric-loaded waveguides [4]-[6], finlines
{7], and microstrip lines [8]. As mentioned above, it is obvious that
solitons, termed in the usual context, are closely related with the
bound modes [3]. In the similar context, we would like to pose an
interesting question: Is there a solitonic entity that has analogy to the
complex and the evanescent modes of a linear waveguide? If so, how
is that expressed algebraically? One will notice immediately that the
answer is quite nontrivial. Indeed, to our knowledge there has been
no report in which an example of such an analog is presented. Our
conclusion is that, at least for such normal media as cited above, one
could not find a candidate of the complex soliton (i.e., the soliton with
complex propagation constant). In this paper, we find analytically
that a type-II superconductor may support a solitonic analog of the
complex modes, which approaches the evanescent soliton in the limit
of low frequency. In the framework of the Ginzburg-Landau (GL)
theory [9], analytical results for high-frequency electromagnetic wave
propagation in the form of a spatial complex soliton are presented.

II. FORMALISM BASED ON GINZBURG-LANDAU THEORY

We consider the time-harmonic electromagnetic wave propagation
in bulk superconductors. We assume that the energy of an electro-
magnetic quantum (i.e., a photon) is much lower than the gap energy
(hw <€ A), and the temperature is considerably lower than the
critical value (T < T.). In such situations the contribution from the
frequency-dependent normal (asuperconducting) current |j (w)| will
be sufficiently smaller than that from the superconducting current | j . |
This relation, |j _(w)| < |§_|, allows one to employ a perturbational
treatment based on quasi-st?ltic approximation {91, [10], and thus leads
to the GL equations

iV + (21 /¢0) APY — ¥ 4 [P T =0 (1a)

VXVxA=@n/e)j +ij (w)] (1b)

J,(0) = —ilen (T)/(4m)|(¥" - V¥ — VI* - ¥)
= [e*/(me)lna(T)P[A  (Lo)

where U (r) is the order parameter [r is a vector that indicates spatial
dependence of field, i.e., for Cartesian coordinate, 7 = (z, ¥, 5)],
A(r) is the vector potential, £ is the coherence length, ¢, is the flux
quantum, and n.(7") stands for the density of the superconductive
component, Other symbols (c, e, m) obey the usual definition in
the GL theory [9]. This theory is established as a representative
phenomenological approach to studying superconducting states that
undergo spatial variations due to an external field. In (1b) l’s(g)
v, (r)] indicates the current density vector due to superconductivity
(normal conductivity); the argument “w” of the normal current has
been attached to indicate explicitly that it depends significantly on the
frequency of the time-harmonic electromagnetic field. The explicit
form of j depends not only on the frequency but on the temperature
under consideration and the purity of a superconductor [see (3)-(5)].
Note that for the field variables in (1), the time-harmonic dependence
of exp (—iwt) is implied.
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The specific form of j ,, can be written as [9]
i, =Q(wA (2a)
with
Qw) = (3/4)[(nee®)/(me)][A/ (Avg)]|Q1 (w) (b)

where n. is the number density of electrons and ¢ is the center-of-
mass momentum of a Cooper pair. The expression of Q; depends
on the temperature. At T' = 0, superconductors do not contain quasi-
particles that could absorb quanta of any energy. The absorption of
electromagnetic waves occurs when fiw > 2A. In the vicinity of the
threshold we obtain [9]

Q1 ~ 7 {(hw)/[2A(0)] - 1}. 3

Note that for iw > 2A the difference between a superconduc-
tor and a normal metal disappears. The characteristic wavelengths
corresponding to the threshold (hw = 2A) lie within a range of
the order of 1-0.1 mm and the corresponding frequencies of the
order of 10*'-10"* Hz. At T > 0 there exist quasi-particles in
the superconductor that can absorb photons of any frequency. The
expression that is valid for w €« A, T <« A is given by [9]

Q1 ~ 4rsinh [w/(2T)|Ro[w/(2T)] exp [-A(0)/T] 4)

where K is the modified Bessel function of the second kind. For a
dirty superconductor in the London limit near 7, when w € A €
T. (obviously, for so-called high-7. superconductors this condition
would become much relaxed), we have the following relation

Qw) =wa/c &)

where ¢ is the conductance due to the superconductor alloy.

III. COMPLEX SOLITON SOLUTIONS

Concentrating on the transverse-electric (TE) polarized field (where
/8y = 0) and on a gauge 4 = (0. A. 0), (1) with (2a) can be
reduced in the form

KO )02 + 871027 — AH T+ ¥ - ¥ =0 (6a)

(0°)0a” + 879" )A+ivA— TP A =0 (6b)

where ¥ has been assumed to be real. With this assumption, the first
term on the right-hand side of (lc) is dropped, which results in the
substantial reduction of subsequent algebraic effort. In the derivation
of (6), the physical variables have been scaled according to

z—x/A s — 2fA 3= BN A — Af[do/(27N)]. @)
With this normalization, x and ~ are defined as
k= XE v=200Q/(c)) ®

both of which must be positive.
For an explicit form of the total vector field (¥, A), we consider

T(z, z) = 9Y(x) (9a)

Az, z) = (1/2)A(x)exp (i8z) + c.c. (9b)

where /3 is the propagation constant (we define ' = Ref8 > 0,
3" =Im B > 0) and c.c. denotes complex conjugate. On substitution
of (9) into (6), one obtains a set of simultaneous nonlinear ordinary
differential equations with three unknowns [A(z), ¥(x), j]

d*y/da® + k2 — KP® 20 (10a)

d*Ajda® + iy = BHA-—p*A=0 (10b)
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Fig. 1. Schematic transverse intensity profile of component fields of com-

plex soliton in a superconductive medium. (a) Dark component. (b) Bright
component.

where x is the GL parameter that is defined in (8) and ~ is a
frequency-dependent real parameter that comes from the normal
current in (1c); the specific form of v is determined from (2)—(5).
In the derivation of (10a), we have dropped a term proportional to
| A]?%), implying that [Ag| < x|to|. (The definition of Ao and 9 is
presented below.) Because (10) are coupled nonlinear Schrédinger-
type equations with self-defocusing nonlinearity, it will be reasonable
to set a particular ansatz of a dark soliton [1]

i (z) = 9 tanh (az), A(x) = Ao tanh (ar) (11)

where (a, 10, Ao) are real parameters that feature the soliton profile
shown in Fig. 1(a). Note that it is the addition of the term %A in
(10b) that is responsible for inducing the nontrivial transverse pattern
of the vector potential in an unbounded medium. In the framework
of our perturbational approach based upon a quasi-staric treatment, it
must be maintained that v < 42 [10]. On substitution of (11) into
(10), to be self-consistent, it must be required that

=272 |yl =1,6=1 (12)

B=p+if" = (iy—1)"* (13)

Note that the value of x exceeds k. = 27'/? = 0.7071, which is
the critical value between the type-I (0 < k < k) and the type-II
(& > k) superconductors [9]. From (13) one can obtain the explicit
form of the propagation constant

B =2 + (14472 (14a)

ﬂ// — {[1 + (1 +72)1/2]/2}1/2

where v < 1. It should be noted in (14) that as the complex modes
that were predicted for microwave transmission lines [4]-[8], the
magnitude of the attenuation constant 3" is comparable to that of
the phase constant 8'. In the limit of v — 0, (14) predict ' — 0,
8" = 1, which shows a typical feature of the evanescent soliton in
the sense that the phase constant vanishes. The evanescent soliton
has analogy to the waveguide mode below a cutoff frequency. The
penetration depth of the complex soliton (the soliton with complex
propagation constant) is estimated by L = 1/8". For instance, for
v = 1072, L = 1.0.
As an alternative for (9a) in what follows, we consider

U(z, z) = (1/2)9(z) exp (ipz) + c.c.

(14b)

(15)

where p is a nonvanishing real parameter that indicates the pitch
of a sinusoidal modulation along the longitudinal (the z) axis.
With vanishing p, the longitudinal variation of the order parameter
disappears, and apparently (15) is reduced to (9a). On substitution of
(9b) and (15) into (6), as in the case of p = 0, one obtains a set of
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simultaneous nonlinear ordinary differential equations with the three
unknowns [A(z), ¥(x), §]

A2y )de® + 52 — (3/4)r%¢* 20 (16a)

BPA/de® + (iy — B5)A - (12?4 = 0. (16b)
Here, rotating wave approximation that will be valid for 8/ < |p|
has been applied, and as in the derivation of (10), implying that
|[4o| € &|1ho|, we have dropped the term proportional to |A[|*¢.
Substituting (11) into (16), we derive

o =372 | = (4/3)"%, k= (2/3)" a7
B=08+ip" = (iy—2/3)"/? (18)

with
B = (v/D6/12+ (4 + 9y") )}/ (19a)
B = {2+ (4+9)"*)/6} /2. (19b)

From (17), in the present case as well, the GL parameter is larger
than the critical value [x = (2/3)'/2 = 0.8165 > £.]. In the limit
of v — 0, it follows that 2’ — 0, 3" — (2/3)'/2, Again one can
find the evanescent soliton. For instance, for v = 1072, L = 1.22.

IV. ELECTROMAGNETIC-FIELD COMPONENTS
From (9b) and (11), the expression of the total vector potential can
be written in the form

Az, 2, t) = |4o| tanh (az) exp (— 8" 2) cos (8’2 — wt).

20

Thus, the resultant nonvanishing electromagnetic-field components
are straightforwardly derivable

E, = —0A/8t = —w|Ao|tanh (az) exp (—3"2z)sin (3 z — wt)
(21a)

B, = —0A/0z =

Aol tanh (ax) exp (—8"2)
X [8sin (8’2 — wt) — " cos (8’2 — wt)] (21b)

B. = 9A/dx = a|Ao|sech® (ar) exp (73" 2) cos (B z — wt).

(21¢)
Focusing our attention solely on a radiation field, in the derivation of
(21a) we have ignored any contribution from the scalar potential. It
will be worth emphasizing that these expressions of the field profiles
contain an interesting feature. In (21a) and (21b), first we note that
the intensity of E, and B. has a dip around the center [Fig. 1(a)],
whereas that of B. has a peak there [Fig. 1(b)]. Thus, in the vicinity
of the center (« ~ 0), the longitudinal field component can relatively
be dominant, and the soliton becomes more “bright.” The dominance
is reversed as the transverse site is distant from the center.

V. CONCLUSION

We have shown that a type-II superconductor may support complex
solitons of weak electromagnetic radiation. They could be regarded
as a solitonic version of the complex modes that were predicted for
certain kinds of electromagnetic waveguides. The results presented
herein will be useful for exploiting the fundamental kinetics of
short-range solitons in a future microwave device that includes
superconductors and/or superconductive thin films.
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On the Computation of Complex Modes in Lossless
Shielded Asymmetric Coplanar Waveguides

Khwaja M. Rahman and Cam Nguyen

Abstract—We compute complex modes in lossless shielded asymmetric
coplanar waveguides (CPW?’s) using the spectral domain technique. The
slot asymmetry is found to significantly affect the existence of the complex
modes. These modes are found to exist at low microwave frequencies even
when using materials with a low permittivity. We found that waveguide
modes degenerate into complex modes more frequently than CPW (7)
and slotline (c¢) modes. When the structures are highly asymmetrical
and when the dielectric substrates are thick or have a high permittivity,
the degeneration of lower-order c-modes into complex modes is detected.
Other forms of mode conversion, where a waveguide mode is converted
to a c-mode, are also observed, especially in highly asymmetric structures
and when using dielectric materials of a high permittivity or of a large
thickness. Numerical convergence of the complex modes’ propagation
constants is also examined.

1. INTRODUCTION

Since its discovery in 1969 by C. P. Wen [1], coplanar waveguide
(CPW) has been used widely for microwave integrated circuits
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(MIC’s) and monolithic microwave integrated circuits (MMIC’s) [2].
Among CPW’s, the asymmetrical version is very attractive since
it can provide additional circuit design flexibility and improved
characteristic impedance range. Various dynamic [3] and quasi-static
[4] analyses have been performed for asymmetric CPW’s. However,
the analysis of complex modes in asymmetrical CPW’s has not yet
been addressed. As will be seen, the existence of complex modes is
highly pronounced in asymmetrical CPW’s. They have been found
even at low microwave frequencies and in low permittivity substrates.
A thorough knowledge of these complex modes is thus very important
for the accurate design of MIC’s and MMIC’s using asymmetric
CPW’s in both low and high microwave regions.

In the past several years, complex modes in lossless waveguid-
ing structures have been studied by a number of researchers. The
presence of complex modes in lossless waveguiding structures was
first predicted for a circular dielectric-loaded waveguide [5]. Later,
theoretical as well as experimental investigations were made on the
circular dielectric-loaded waveguide to confirm the existence of these
modes [6], [7]. Complex modes were also reported for lossless finlines
[8] and shielded microstrip lines [9], [10].

We present in this paper an extensive investigation of complex
modes in lossless shielded three-layer asymmetric CPW’s using the
spectral domain approach (SDA) [11]. The effects of slot asymmetry,
and dielectric constant and thickness of dielectric materials on the
possible existence of complex modes, are described. Special attention
is given to the numerical convergence of the calculated complex
modes’ propagation constants. The developed analysis has been
applied to a symmetric CPW, and generated numerical results of
the propagation constants of several real modes agree well with
previously published data [12]. It should be noted here that our
considered three-layer asymmetric CPW’s are general in that they
are applicable to both open and shielded CPW’s, both symmetry
and asymmetry in slots and ground planes, with and without a
back-side conductor, with and without dielectric overlay, and with
finite- and infinite-extent substrates. They can elude the energy
leakage or increase the single-mode operating range with properly
chosen dielectric substrates [13]. It is therefore expected that these
asymmetrical CPW structures can be exploited to achieve MIC’s and
MMIC’s with enhanced performance and smaller size.

II. NUMERICAL RESULTS AND DISCUSSIONS

Complex modes in a lossless shielded three-layer asymmetric
CPW’s with assumed infinitesimally thin metallization (Fig. 1) are
investigated using the SDA. Applying the SDA produces a system
of homogeneous linear equations. By setting the determinant of the
coefficient matrix of the resultant equations to zero, we can solve for
the propagation constants, -, of all of the eigenmodes. The values of
~ will be searched in the complex plane, owing to the fact that it is
complex for complex modes. Due to the asymmetry in the structure,
both the CPW (7) and slotline (c) modes will be excited along with
the waveguide modes, leading to the possible existence of complex
7-, c-, and waveguide modes. These complex modes appear in pairs
and are formed when two evanescent modes degenerate into a pair of
modes having v = « % j3, and which propagate in the & directions
with a phase constant 5 and attenuation constant «. These respective
waves attenuate and grow exponentially with « as they propagate,
leading to no corresponding transmitted power. Their existence is
noticed when the root of the eigenvalue equation is complex, in spite
of the lossless transmission line assumption.
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